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Self-organization of quantum dots in epitaxially strained solid films

A. A. Golovin and S. H. Davis
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208-3100, US

P. W. Voorhees
Department of Materials Sciences, Northwestern University, Evanston, Illinos 60208-3100, USA

~Received 11 December 2002; published 3 November 2003!

A nonlinear evolution equation for surface-diffusion-driven Asaro-Tiller-Grinfeld instability of an epitaxially
strained thin solid film on a solid substrate is derived in the case where the film wets the substrate. It is found
that the presence of a weak wetting interaction between the film and the substrate can substantially retard the
instability and modify its spectrum in such a way that the formation of spatially regular arrays of islands or pits
on the film surface becomes possible. It is shown that the self-organization dynamics is significantly affected
by the presence of the Goldstone mode associated with the conservation of mass.
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I. INTRODUCTION

Spontaneous formation of nanoscale islands~quantum
dots! on surfaces of epitaxially strained thin solid films is
potentially efficient route to producing large arrays of do
required for a new generation of electronic devices. Th
islands form by a Stranski-Krastanow growth proce
whereby the planar film surface undergoes a morpholog
instability of Asaro-Tiller-Grinfeld type@1#. The instability is
driven by the stress created by the lattice parameter m
match between the film and substrate and results in the
mation of dislocation-free islands@2#. After formation, the
islands can coarsen, with larger islands growing at the
pense of the smaller ones@3#, or evolve into a system o
islands with almost uniform sizes@4#. While significant in-
sights into the conditions governing the coarsening of isla
have been made by considering the energetics of island
mation @5#, the dynamicsof island formation has receive
much less attention. Fully dynamical descriptions of stre
driven island formation during heteroepitaxy have usua
been limited to numerical simulations of the evolution
small numbers of three-dimensional islands@6#, though one
recent work@7# explores a large number of dots in thre
dimensions by means of large-scale three-dimensional c
puter simulations.

Another promising route to studying the dynamics of t
formation of large numbers of dots is to derive an evolut
equation for the film surface shape,h(r ,t). This approach
delivers greater insight into the mechanism of the dot form
tion and evolution at much lower cost. A simple~dimension-
less! evolution equation that captures much of the relev
physics can be derived in the limit of a perfectly rigid su
strate, in a small-slope approximation near the instabi
threshold@8#

] th5¹4h1b¹6h1¹2Fh¹2h1
1

2
u“hu2G , ~1!

wherer5(x,y) are coordinates along the planar surface, a
b is the coefficient depending on the Poisson ratio of
film. Generalization of Eq.~1! for the case of an infinitely
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deep, elastic substrate has been performed recently in
@9#. In both cases, the solutions blow up in finite times, sim
lar to the boundary-integral computations for semifin
stressed solids that exhibit formation of a cusplike surfa
morphology with the speed of the cusp tip approaching
finity @10#. Examples of the blow-up solutions of Eq.~1! are
shown in Fig. 1.

One can argue that these evolution equations can des
the tendency towards the formation of islands. However, i
desirable to have a model describing thesaturation of the
instability and the formation offinite-size structuresas ob-
served in experiments. In this paper, we show that a poss
mechanism for the formation of uniform-size quantum d
and even spatially regular arrays of islands is thewetting
interaction between the film and the substrate. We demo
strate, within the framework of a small-slope approximatio
that this interaction changes the instability spectrum so
the instability at onset can correspond to perturbations wi
small but nonzero wave number. This makes the formation
spatially periodic patterns possible. We show that cert
wetting potentials between the film and the substrate can
to a nonlinear stabilization of the instability near thresho
and to the self-organization of spatially regular arrays of
ther quantum dots or nanopits.

II. EVOLUTION EQUATION IN THE PRESENCE
OF WETTING INTERACTIONS

Consider an epitaxially strained thin solid film that wets
perfectly rigid solid substrate. The shape of the film surfa
evolves due to surface diffusion to decrease the elastic
ergy of the film. This evolution is described by the followin
equation@8#:

] th

A11u“hu2
5D“S

2@E~h!1g K1F#, ~2!

whereD is a constant proportional to the surface diffusivit
E(h) is the elastic energy density at the surface found fr
the solution of the elastic problem@2,8#, g is surface energy,
K is the curvature of the surface, andF(h,u“hu2,¹2h) is a
©2003 The American Physical Society03-1
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wetting chemical potential that generally can be conside
as a function of the film thickness, slope, and curvature. S
a general form encompasses models of the wetting la
which involve nonlinear elasticity@11# as well as height-
dependent surface energyg5gs1(g f2gs)G(h), wheregs, f
are surface energies of the substrate and the thick film,
spectively, andG(h) ranges from 0 to 1 whenh varies from
0 to ` @12#. For example, in the latter case,F5g(h)K
1(dg/dh)/A11u“hu2. In the case of the van der Waals
type wetting interactions,F5A/hn. For some metals and
semiconductors other forms of wetting potentials are p
sible. Also, a wetting potential can be anisotropic, it c
depend on the orientation of the solid film free surface, i
on its slope. In the latter case, it can depend not only on
absolute value of the surface slope but also on its sign. H
ever, for highly symmetric surface orientations only absol
value of the surface slope would matter.

Thus, the problem with the wetting solid film differs from
that in Ref. @8# only by the addition of the functiona
F(h,u“hu2,¹2h). The small-slope analysis carried out
Ref. @8# for the case of a perfectly rigid substrate is eas
repeated for this case to yield the following dimensionle
evolution equation for the scaled surface shapeH:

]TH5¹2H ~H21!¹2H1
1

2
~“H !2

1
Dt

a2L3
FS LH,a2u“Hu2,

a2

L
¹2H D J 1O~a2!.

~3!
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Here, according to Ref.@8#, the spatial scale isL
5g/(4md2) and the time scale ist5L3/(4md2D), where
d!1 is the lattice misfit of the epitaxially strained film,m is
the elastic shear modulus,a!1 is the slope parameter, an
dimensionless space and time coordinates are long scale
“;a,]T;a2. The termsO(a2) in Eq. ~3! are computed in
Ref. @8#.

First, we neglect the dependence of the wetting poten
on the curvature of the film surface, thus consideri
F(h,u“hu2), and assume that

S Dt

L2 D ]F~L,0!

]h
5a4a,

S Dt

L D ]2F~L,0!

]h2
52a2b, ~4!

S Dt

L3 D ]F~L,0!

]u“hu2
5c,

where a, b, and c are O(1) constants. Then, takingH51
1a2@h1h(r ,t)#,h5const, and introducing a new tim
scale t5a2T, one obtains, after appropriate rescaling, t
following evolution equation forh:

] th5g¹2h1¹4h1¹6h1¹2@h¹2h1p~“h!21qh2#,
~5!

where
3-2
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FIG. 2. Dispersion curvess(k) for the ATG instability of a solid film on a rigid substrate~a! without wetting interactions and~b! with
wetting interactions:~1! g,gc , ~2! g5gc , ~3! g.gc .
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g5abh22, p5
1

2
1c, q5bbh21, b5

314n

6~12n!
,

~6!

and n is the Poisson ratio. The linear term with the six
derivative comes fromO(a2) nonlinear terms in Eq.~3! af-
ter the rescaling~see Ref.@8# for details!.

Equation~5! describes the nonlinear evolution of a thi
epitaxially strained film in the presence of wetting intera
tions with the substrate. One can see that wetting interact
suppress the instability~see also Refs.@13,11,14#! and
change the spectrum of linear perturbations of the film s
face ;est1 ik•r from s5k42k6 for Eq. ~1! to s52gk2

1k42k6, see Fig. 2. Thus, the instability occurs forg,gc

51/4 at a wave numberkc5A2/2, which makes formation
of stationary, spatially periodic patterns possible in t
system.

III. PATTERN FORMATION IN 1 ¿1 SYSTEM

First, we consider a 111 system@two-dimensional~2D!
film with 1D surface# since some important features of th
nonlinear evolution of the film instability can be studied
this case.

A. Weakly nonlinear analysis

In order to study the possibility of pattern formation w
shall first perform a weakly nonlinear analysis of stationa
solutions of Eq.~5! near the instability threshold. A charac
teristic feature of the system described by Eq.~5! is the pres-
ence of the Goldstone modes50, corresponding tok50
~see Fig. 2! and associated with the conservation of ma
The nonlinear interaction between the Goldstone mode
the unstable mode can substantially affect the system be
ior near the instability threshold@15,16# and must be taken
into account in weakly nonlinear analyses.

Consider a 1D version of Eq.~5!. Takeg5gc22e2 and

h;eA~X,T!eikcx1c.c.1e2B~X,T!1•••,
05620
-
ns

r-

s

y

.
d
v-

whereA is the complex amplitude of the unstable mode,B is
the real amplitude of the Goldstone mode,X5ex, and T
5e2t. Standard multiple-scale analysis near the bifurcat
point yields the following system of equations forA andB:

]TA5A1AXX2l0uAu2A1sAB, ~7!

]TB5mBXX1w~ uAu2!XX ,

where

l05
2

9
~11p22q!S p1q2

5

4D , ~8!

m5
1

4
, s5

1

4
2q, w5211p12q.

System~7! is similar to that obtained in Ref.@17# for the
interaction between long- and short-scale modes of M
rangoni convection in a thin liquid layer with a deformab
interface. It can also be considered as a generic system
scribing nonlinear evolution in a large class of unstable s
tems with a conserved quantity@16,19#.

For l0.0 the periodic structure is supercritical and c
be stable, while forl0,0 it is subcritical and blows up in a
finite time. The conclusion about stability of the supercritic
pattern, however, cannot be made unless the interaction
the Goldstone mode is taken into account. Forl0.0, sta-
tionary solution of the system~7!,

A05l0
21/2, B050, ~9!

corresponds to a 1D periodic array of ‘‘islands.’’ Consid
perturbationsÃ,B̃ of the solution~9! in the form

Ã5ãeiQX1vT1b̃e2 iQX1v* T, B̃5 c̃eiQX1vT1c.c.,

wherev* is the complex conjugate ofv. One easily obtains
from Eq. ~7! that the stationary solution becomes unsta
with respect to monotonic perturbations, Im(v)50, for
3-3
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FIG. 3. Regions corresponding to different types of excitat
and stability of spatially periodic 1D solutions of Eq.~5! near
threshold: ~1! supercritical stable;~2! supercritical unstable;~3!
subcritical. Coordinates of the points are:O(0.75,0.5),
B(20.25,1.5),C(0.25,1),F(0.25,20.5), andG(0.5,0).
s-
nd

05620
sw

m
1l0,0. ~10!

Condition ~10! allows one to determine regions in th
(q,p) plane corresponding to different types of pattern ex
tation and stability near threshold, as shown in Fig. 3. T
straight linesOCB and OGF correspond tol050 and the
curvesAB, CD, EF, and GH are parts of the hyperbola
sw/m1l050. It is interesting that at the intersection poi
O, p51/2 andq53/4. Sincep51/2 corresponds toc50,
this means that unless the wetting potential depends on
film slope, the periodic structure is always subcritical a
therefore blows up. Weakly nonlinear analysis is not use
in this case.

B. Numerical simulations

In order to study the evolution of the formation of 1
arrays of islands farther from the instability threshold, w
have performed numerical simulations of Eq.~5! by means
of a pseudospectral code with periodic boundary conditio
For the parameter values corresponding to region 1 in Fig
near the instability threshold, one observes the formation
sinusoidal surface profile. With the increase of the superc
cality ~i.e., with the decrease ofg from gc51/4), the surface
shape becomes significantly nonharmonic and exhibits
typical periodic patterns: periodic arrays of ‘‘cone’’-type i
lands and ‘‘cap’’-type islands shown in Fig. 4. Cones a

caps are observed forp.0 andp,0, respectively.
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FIG. 4. Stationary numerical solutions of Eq.~5! in 1D for (g,q,p)5 ~a! (0.1,21.0,4.0) ~cones! and ~b! (0.1,1.0,24.0) ~caps!.
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FIG. 5. Localized stationary solutions of Eq.~5! in 1D: ~a! patches of cones,g50.24,p54.0, q522.3; ~b! patches of caps,g
50.248,p523.0, q53.0.
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For the values of the parametersp andq from region 2 in
Fig. 3, where periodic arrays of islands near the instabi
threshold are unstable due to the presence of the Golds
mode, one observes the formation of localized~or strongly
modulated! patches of islands shown in Fig. 5. Depending
the sign of the parameterp, these can be either patches
cones or caps. They correspond to stationary solutions o
system~7!, A(x) andB(x), which are obtained in terms o
Jacobi elliptic functions and analyzed in detail in Ref.@16#.

Localized solutions shown in Fig. 5 are predicted on
near the instability threshold in the region 2 in Fig. 3. W
the increase of the supercriticality, one observes either
formation of periodic arrays of cones or caps, or the blow-
The latter can be of either ‘‘island’’ type, similar to tha
exhibited by solutions of Eq.~1! without wetting interac-
tions, shown in Fig. 1, or a ‘‘pit’’ type. These two types o
the blow-up are shown in Fig. 6. Note that spontane
formation of nanopits has been recently observed in exp
ments@21#.

IV. PATTERN FORMATION IN 2 ¿1 SYSTEM

More interesting is the 211 case of a 3D film with a 2D
surface whose evolution is described by Eq.~5!. Note that
Eq. ~5! does not have the symmetryh→2h. In this case, the
instability whose threshold corresponds to a finite wa
number~see Fig. 2! usually results in a hexagonal patte
that occurs via a transcritical bifurcation@20,22#. In this sec-
tion we concentrate on the formation of surface structu
with hexagonal symmetry.
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A. Hexagonal arrays of dots and pits

The weakly nonlinear evolution of a hexagonal surfa
structure,h;( j 51

3 Aje
ik j •r1c.c., where the wave vectorsk j

form an equilateral triangle with the sidekj5kc[A2/2, is
usually described by three Ginzburg-Landau–type equat
for the complex amplitudesAj @20,22#. However, in our case
the interaction with the Goldstone mode must also be ta
into account. Thus, considerg5gc22g1e2, and

h5e(
j 51

3

Aj~R,T!eik j •r1e2B~R,T!1c.c.1•••, ~11!

where Aj ( j 51,2,3) are three complex amplitudes of th
unstable modes with wave vectorsk j , respectively,B is the
real amplitude of the Goldstone mode,R5er , and T5e2t.
We use the multiple-scale analysis near the bifurcation p
to obtain the following system of coupled equations forAj
andB:

]TAj5g1Aj12~k j•“ !2Aj1r 0Al* An*

1 i (
lÞnÞ j

@Al* ~r 1k l1r 2kn!•“An* #2@l0uAj u2

1l1~ uAl u21uAnu2!#Aj1sAjB, ~12!

]TB5m¹2B1w¹2~ uA1u21uA2u21uA3u2!, ~13!

where
3-5
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l15S 211
3

4
p1qD S 11

1

2
p22qD , ~14!

r 05
1

2 S 12
1

2
p22qD , r 152p22r 0 , r 25122r 0 ,

and other parameters are defined in Eq.~8!. The indicesj ,l ,n
run from 1 to 3.

Equations~12! and ~13! are similar to those derived pre
viously for the interaction between hexagonal Marang
convection and the long-scale deformational Marangoni
stability @18#, as well as in several other pattern formin
systems with conserved quantities@19#. Note that since a
hexagonal pattern occurs via a transcritical bifurcation,
~12! is valid, strictly speaking, only forr 05O(e). Other-
wise, these equations should be considered as model e
tions describing weakly nonlinear evolution of a hexago
pattern~see Ref.@23#!. System~12! and~13! has the follow-
ing stationary solutions:

Aj5A056
ur 0u1Ar 0

214g1~l012l1!

2~l012l1!
, ~15!

B50,

corresponding to a spatially regular pattern of equilate
hexagons, with the signs6 corresponding tor 0.0 and r 0
,0, respectively. Thus, depending on the sign of
05620
i
-

.

ua-
l

l

e

resonant-interaction coefficientr 0, the system can exhibi
formation of hexagonal arrays of either mounds~dots! or
pits. Dots occur forr 0.0(A0.0) and pits occur forr 0
,0(A0,0). In both cases, the hexagonal pattern can
stable only forl0.0 and l012l1.0 @22#. Also, in our
case, the presence of the Goldstone mode strongly affect
stability of the pattern. A detailed stability analysis of he
agonal patterns in the presence of the Goldstone mo
within the framework of the system~12! and ~13!, has been
recently carried out in the long-wave approximation@19#,
and it has been shown that if

2ws1m~l01l1!,0, ~16!

a hexagonal pattern is unstable at any supercriticalityg1
@19#.

The described stability conditions determine regions
the (q,p) plane where self-organization of hexagonal a
rangements of dots or pits can be observed. These reg
are shown in Fig. 7. The linesBC and FG correspond to
l050 and the curvesAB, CD, EF, andGH are parts of the
hyperbolal012l150. Condition~16! holds outside the re-
gion bounded by the dashed lines. Inside this region surf
structures with hexagonal symmetry can be stable in a
tain range of the supercriticalityg1 and the pattern wave
number ~a ‘‘Busse balloon’’! ~see Refs.@20,19# and refer-
ences therein!. The linesBK and FL correspond tor 050
and divide the regions where hexagonal arrays of dots or
can be observed. Note that the full stability analysis m
3-6
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include the consideration of finite-wavelength instabiliti
@23# but this is beyond the scope of the present paper.

One can see from Fig. 7 that, unlike the 111 case, in the
211 system there is an interval 0.4,p,0.6 @or ucu,0.1, see
Eq. ~6!# in which hexagonal arrays of dots or pits are alwa
subcritical and therefore unstable. Thus, the wetting inte
tion between the film and the substrate can lead to the s
organization of dots or pits with the almost uniform siz
only if the wetting potential has strong-enough depende
on the surface slope~e.g., sufficient anisotropy!, namely, for
ucu.0.1 or @see Eq.~4!#

U]F~L,0!

]u“hu2
U.0.4md2. ~17!

This conclusion is related to the formation of only tho
regular structures whose characteristic scale is much la
than the critical film thickness.

We have performed numerical simulations of Eq.~5! in
2D by means of a pseudospectral code with periodic bou
ary conditions. The results of the numerical simulations
shown in Fig. 8. One observes the formation of hexago
arrays of dots or pits in the parameter regions predicted
the weakly nonlinear analysis. It is interesting that, similar
the 111 case, the formation of two types of dots is possib
conelike and caplike@Figs. 8~a,b!#. With the increase of the
supercriticality cones transform into caps. Similarly, the f
mation of two types of pits is observed: ‘‘anticones’’ at sm
supercriticality and ‘‘anticaps’’ at larger ones@Figs. 8~c,d!#.
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agonal arrays of dots or pits can be observed in solutions of Eq~5!
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B. Wires, rings, and other surface structures

It is known that hexagonal patterns can become unsta
with respect to patterns with other symmetries@25,20,22,24#.
This instability is determined by the Landau coefficientl~f!,
governing the nonlinear interaction between two modes ch
acterized by two wave vectorsk1 and k2 , k15k25kc ,
k1•k25kc

2cosf. The Landau coefficient is a function of th
anglef between the two wave vectors. Obviously,l~f! is
defined for 0,f,p andl~f!5l~p2f!. Standard multiple-
scale analysis of Eq.~5! near the bifurcation thresholdg
5gc yields

l~f!5S 2
3

2
1p12qD @a1~f!1a2~f!#

1~211p!cosf@a1~f!2a2~f!#, ~18!

a6~f!5
16p cosf22q

~cosf 61/2!2
.

Note that the functionl~f! is singular atf5p/3,2p/3 due
to the resonant quadratic interaction between these mo
which is responsible for the formation of a hexagonal patt
and is not taken into account in the computation ofl~f!. The
Landau~cubic! interaction coefficient in this case is equal
l1 in Eq. ~14!. Note also thatl(0)5l01sw/m, which ex-
plains the stability condition~10!.

Stability of a hexagonal pattern with respect to patte
with other symmetries was investigated in a number
works ~see, e.g., Refs.@25,24,20,22# and references therein!.
It was shown that, with the increase of the supercriticality
hexagonal pattern can become unstable with respect
stripe pattern ifl1 /l0.1. The presence of the Goldston
mode, as well as the presence of the quadratic nonlin
terms with the coefficientsr 1 andr 2 in Eq. ~12! ~which char-
acterize the dependence of the resonant quadratic intera
coefficient on the mode wave vectors@23#!, can promote the
instability @23,19#. In our numerical simulations we have ob
served the transition from hexagonal arrays of dots or pit
stripe patterns~wires!, which occurs with the increase of th
supercriticality, gc2g. These wires are shown in Fig. 9
Transition from dots to wires in epitaxially strained films h
been observed in experiments@26#.

An interesting surface structure can develop in the para
eter regions wherel0.0,l1.0, andl~p/2!,0. In this case,
there is a strong interaction between the modes with ortho
nal wave vectors that can lead to a resonant coupling
tween two systems of hexagons whose basic wave ve
sets (k1 ,k2 ,k3) and (k4 ,k5 ,k6), each forming an equilatera
triangle, are mutually orthogonal. This can lead to the form
tion of a dodecagonal quasiperiodic pattern@27,24#. Our nu-
merical simulation of Eq.~5! shows that such quasiperiod
dodecagonal arrangement of dots can indeed form; i
shown in Fig. 10~a!. However, this dodecagonal structu
occurs only at the beginning of pattern formation; later
time it either gets replaced by a hexagonal structure or gr
further and ultimately blows up. The intermediate stage
the blow-up is shown in Fig. 10~b!.
3-7



GOLOVIN, DAVIS, AND VOORHEES PHYSICAL REVIEW E68, 056203 ~2003!
FIG. 8. Numerical solutions of Eq.~5! for various parameter values:~a! hexagonal array of cone-type dots,p52.0, q520.5, g50.2; ~b!
hexagonal array of cap-type dots,p524.0, q51.0, g50.01; ~c! hexagonal array of anticone-type pits,p524.0, q52.0, g50.24; ~d!
hexagonal array of anticap-type pits,p524.0, q52.0, g50.2.
a

e

s
e
re

ua
o
s

f t
e
it

o
fo
o

by
the
the
the
he
We
pa-

tial
ble.
af-
ated

tum
ering

tion
G
y
ed
In the parameter regions where the hexagonal patterns
subcritical, or unstable according to condition~16!, solutions
of Eq. ~5! blow up in a finite time. Depending on th
resonant-interaction coefficientr 0, the blow-up occurs
through the formation of high, spatially localized mound
similar to that shown in Fig. 1, or deep pits. The latter d
velop into the structures, shown in Fig. 11, that strongly
semble ‘‘quantum rings’’@28# or ‘‘quantum fortresses’’@21#
observed in experiments.

V. DISCUSSION AND CONCLUSIONS

We have derived a small-slope nonlinear evolution eq
tion describing the spontaneous formation of quantum d
in an epitaxially strained solid film with wetting interaction
between the film and the substrate, near the threshold o
Asaro-Tiller-Grinfeld instability. We have shown that th
wetting interaction retards the instability and changes
spectrum so that the instability threshold corresponds t
small but nonzero wave number. This effect causes the
mation of spatially regular patterns—hexagonal arrays
05620
re
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-
-

-
ts

he

s
a
r-
f

dots or pits. Pattern selection and stability are determined
the properties of the wetting potential. We find that unless
wetting potential depends on the slope of the film surface
spatially regular arrays of dots or pits are subcritical and
solutions of the derived equation blow up in a finite time; t
weakly nonlinear equation is inapplicable in this case.
have obtained the regions in the plane of dimensionless
rameters characterizing the wetting interaction poten
where spatially regular arrays of dots or pits can be sta
We have shown that the stability of patterns is strongly
fected by the presence of the Goldstone mode associ
with the conservation of mass.

Spontaneous formation of hexagonal arrays of quan
dots has been observed in several processes: ion sputt
@29#, self-assembling of Ag monolayers on Ru@30#, Pb on
Cu @31#, and Ge on Si~111!-~737! @32#, as well as in the
multilayer growth of superlattices@33#. Currently, we are not
aware of any observation of a spontaneous self-organiza
of hexagonal arrays of dots or pits resulting from the AT
instability of epitaxially strained solid films. In fact, this ma
be difficult to observe since hexagonal structure is form
3-8
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FIG. 9. Formation of ‘‘wire’’ patterns via transition from~a! dots,p54.0, q521.0, g50.1; ~b! pits, p524.0, q52.0, g50.1.
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near the instability threshold and it becomes unstable w
the increase of the supercriticality. A very precise tuning
parameters would be required in order to achieve ne
threshold conditions. However, it is important that our ana
sis shows a principal possibility of such self-organization
quantum dots in Stranski-Krastanow growth.

Our model also describes interesting phenomena such
transition from quantum dots to quantum wires@26# and the
formation of quantum rings or isotropic quantum fortress
@21,28#. Although the latter appears in the present model a
05620
h
f
r-
-
f

s a

s
a

transitional stage of the blow-up solution, the mechanism
the ring formation—specific properties of the wetting inte
action between the film and the substrate—may well be c
tured. Of course, the derived weakly nonlinear model can
described the full dynamics of this process.

Note that the present model is derived in the small-slo
approximation that holds in the presence of the wetting
teraction only if the wetting potentialF satisfies conditions
~4!. These conditions put strong restrictions on the type
the potentialF for which the approximation can be valid
FIG. 10. Formation of a quasiperiodic array of dots with dodecagonal symmetry,p523.0, q520.1, g50.249. ~a! Initial stage of
formation; ~b! intermediate stage of the blow-up.
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FIG. 11. Intermediate stage o
the blow-up solution of Eq.~5! in
the form of a ‘‘quantum ring’’;p
52.0, q51.0, g50.2.
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Probably the most important restriction is the strong dep
dence of the wetting potential on the surface slope. For
ample, in the case of the ‘‘two-layer’’ model, in which th
wetting interaction is defined by a thickness-dependent
face tensiong(h), so thatF5(dg/dh)/(11u“hu2)1/2 @12#,
conditions ~4! would imply Lu]F/]hu!F,L2u]2F/]h2u
!F, and u]F/]hu!Lu]2F/]h2u. These inequalities can
hold, for instance, near the extremum of the functionF(h),
provided the function is not monotonic. At the same time
sufficiently strong dependence of the wetting potential on
surface slope can be expected in the presence of large an
ropy. Note also that if one assumes that the wetting poten
can depend on the curvature of the film surface, this
change the sign of the nonlinear term¹2@h¹2h# in Eq. ~5!.
In this case all the described results are valid after the tra
formationp→2p,q→2q,h→2h.

To conclude, we have chosen the small-slope approxi
.

v.

05620
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tion and the case of a rigid substrate as the first step
understanding possible effects of the wetting interactions
the formation of quantum dots resulting from the ATG ins
bility of epitaxially strained solid films. Since the mai
effect—the change of the instability spectrum from the lo
wave (kc50) to the short wave (kcÞ0)—depends neithe
on the rigid-substrate assumption nor on the small-slope
proximation, one can investigate, by means of the wea
nonlinear analysis, pattern formation in more general ca
in which these assumptions are relaxed.
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