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Self-organization of quantum dots in epitaxially strained solid films
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A nonlinear evolution equation for surface-diffusion-driven Asaro-Tiller-Grinfeld instability of an epitaxially
strained thin solid film on a solid substrate is derived in the case where the film wets the substrate. It is found
that the presence of a weak wetting interaction between the film and the substrate can substantially retard the
instability and modify its spectrum in such a way that the formation of spatially regular arrays of islands or pits
on the film surface becomes possible. It is shown that the self-organization dynamics is significantly affected
by the presence of the Goldstone mode associated with the conservation of mass.
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[. INTRODUCTION deep, elastic substrate has been performed recently in Ref.
[9]. In both cases, the solutions blow up in finite times, simi-
Spontaneous formation of nanoscale islar{dsantum lar to the boundary-integral computations for semifinite
dotg on surfaces of epitaxially strained thin solid films is a stressed solids that exhibit formation of a cusplike surface
potentially efficient route to producing large arrays of dotsmorphology with the speed of the cusp tip approaching in-
required for a new generation of electronic devices. Thesénity [10]. Examples of the blow-up solutions of Ed.) are
islands form by a Stranski-Krastanow growth processshown in Fig. 1.
whereby the planar film surface undergoes a morphological One can argue that these evolution equations can describe
instability of Asaro-Tiller-Grinfeld typé1]. The instability is  the tendency towards the formation of islands. However, it is
driven by the stress created by the lattice parameter migdesirable to have a model describing theguration of the
match between the film and substrate and results in the foinstability and the formation ofinite-size structuregss ob-
mation of dislocation-free island®]. After formation, the served in experiments. In this paper, we show that a possible
islands can coarsen, with larger islands growing at the exmechanism for the formation of uniform-size quantum dots
pense of the smaller ond§], or evolve into a system of and even spatially regular arrays of islands is tietting
islands with almost uniform sizd#l]. While significant in-  interaction between the film and the substrate. We demon-
sights into the conditions governing the coarsening of islandstrate, within the framework of a small-slope approximation,
have been made by considering the energetics of island fothat this interaction changes the instability spectrum so that
mation [5], the dynamicsof island formation has received the instability at onset can correspond to perturbations with a
much less attention. Fully dynamical descriptions of stresssmall but nonzero wave number. This makes the formation of
driven island formation during heteroepitaxy have usuallyspatially periodic patterns possible. We show that certain
been limited to numerical simulations of the evolution of wetting potentials between the film and the substrate can lead
small numbers of three-dimensional islan@$, though one to a nonlinear stabilization of the instability near threshold,
recent work[7] explores a large number of dots in three and to the self-organization of spatially regular arrays of ei-
dimensions by means of large-scale three-dimensional conther quantum dots or nanopits.
puter simulations.
Another promising route to studying the dynamics of the Il. EVOLUTION EQUATION IN THE PRESENCE
formation of large numbers of dots is to derive an evolution OF WETTING INTERACTIONS
equation for the film surface shaplke(r,t). This approach
delivers greater insight into the mechanism of the dot forma- Consider an epitaxially strained thin solid film that wets a
tion and evolution at much lower cost. A simggimension- perfectly rigid solid substrate. The shape of the film surface
les§ evolution equation that captures much of the relevangVolves due to surface diffusion to decrease the elastic en-
physics can be derived in the limit of a perfectly rigid sub-€rgy of the film. This evolution is described by the following
strate, in a small-slope approximation near the instabilityeduation[8]:

threshold[ 8] H
dy
———— =DV Eh)+yK+ D] 2
1 Sl )
ah=V*n+BV°h+V2 hv?h+ S[Vh2[, (1) Vi+|vhi

whereD is a constant proportional to the surface diffusivity,
wherer =(X,y) are coordinates along the planar surface, and(h) is the elastic energy density at the surface found from
B is the coefficient depending on the Poisson ratio of thethe solution of the elastic problef@,8], y is surface energy,
film. Generalization of Eq(1) for the case of an infinitely K is the curvature of the surface, addh,|Vh|?,V2h) is a
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wetting chemical potential that generally can be consideredHere, according to Ref[8], the spatial scale isL

as a function of the film thickness, slope, and curvature. Suck: y/(4x6%) and the time scale is=L%/ (4 6%°D), where

a general form encompasses models of the wetting laye$<1 is the lattice misfit of the epitaxially strained film, is
which involve nonlinear elasticity11] as well as height- the elastic shear modulug;<1 is the slope parameter, and
dependent surface energy- ys+ (vs— vs)I'(h), whereys¢  dimensionless space and time coordinates are long scale, i.e.,
are surface energies of the substrate and the thick film, ré¥ ~ «,dr~ a?. The termsO(a?) in Eq. (3) are computed in
spectively, and’(h) ranges from 0 to 1 wheh varies from  Ref.[8].

0 to o« [12]. For example, in the latter caséh=y(h)K First, we neglect the dependence of the wetting potential
+(dy/dh)/\1+|Vh[?. In the case of the van der Waals— on the curvature of the film surface, thus considering
type wetting interactionsp =A/h". For some metals and ®(h,|Vh|?), and assume that

semiconductors other forms of wetting potentials are pos-

sible. Also, a wetting potential can be anisotropic, it can (Dr) Jd(L,0)
! 4

depend on the orientation of the solid film free surface, i.e., — | = A,

on its slope. In the latter case, it can depend not only on the L dh

absolute value of the surface slope but also on its sign. How-

ever, for highly symmetric surface orientations only absolute D7\ 32D(L,0)

value of the surface slope would matter. (T)TZZaZb, (4

Thus, the problem with the wetting solid film differs from
that in Ref.[8] only by the addition of the functional

®(h,|Vh|2,V2h). The small-slope analysis carried out in D7\ ad(L,0)
Ref. [8] for the case of a perfectly rigid substrate is easily — —’2= ,
repeated for this case to yield the following dimensionless L®/ o|Vh|

evolution equation for the scaled surface shipe
wherea, b, andc are O(1) constants. Then, taking=1
+a?[ p+h(r,t)],7=const, and introducing a new time

) 5 1 ) scalet= T, one obtains, after appropriate rescaling, the
JrH=VH (H=DVH+ 5(VH) following evolution equation foh:
T a? h=gV2h+V*h+VOeh+V2[hV2h+p(Vh)2+qgh?],
+——®|LH,a?|VH|?—V?H | | + O(a?). (5)
a?l 3 L
(3)  where
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FIG. 2. Dispersion curves(k) for the ATG instability of a solid film on a rigid substrate) without wetting interactions an¢b) with
wetting interactions(1) g<g., (2) g=9., (3) g>g..

) 1 L 3+4yp whereA is the complex amplitude of the unstable moHes
g=apn %, p=5+c, q=bgn "~ B= 6(1=1)’ the real amplitude of the Goldstone modé=ex, and T
(6) = €t. Standard multiple-scale analysis near the bifurcation

point yields the following system of equations farand B:

and v is the Poisson ratio. The linear term with the sixth
derivative comes fron®(«?) nonlinear terms in Eq3) af-
ter the rescalingsee Ref[8] for details.

Equation(5) describes the nonlinear evolution of a thin,
epitaxially strained film in the presence of wetting interac-\, hare
tions with the substrate. One can see that wetting interactions
suppress the instabilitfsee also Refs[13,11,14) and 2
change the spectrum of linear perturbations of the film sur- No=g(1+p—2q)
face ~e’t" kT from o=k*—k® for Eq. (1) to o=—gk?
+k*—k5, see Fig. 2. Thus, the instability occurs g g, 1 1
=1/4 at a wave numbek.=/2/2, which makes formation m=-, s=--—q, w=-1+p+2q.
of stationary, spatially periodic patterns possible in this 4 4
system.

1A= A+ Ayx— \o|A|2A+ SAB, (7

dtB=mByx+W(|A]?)xx,

5
p+q_Z>! (8)

System(7) is similar to that obtained in Refl17] for the
interaction between long- and short-scale modes of Ma-
lll. PATTERN FORMATION IN'1  +1 SYSTEM rangoni convection in a thin liquid layer with a deformable
interface. It can also be considered as a generic system de-
scribing nonlinear evolution in a large class of unstable sys-
tems with a conserved quantif$6,19.

For Ag>0 the periodic structure is supercritical and can
be stable, while folk <O it is subcritical and blows up in a
finite time. The conclusion about stability of the supercritical
pattern, however, cannot be made unless the interaction with

In order to study the possibility of pattern formation we the Goldstone mode is taken into account. kgr-0, sta-
shall first perform a weakly nonlinear analysis of stationarytionary solution of the systertv),
solutions of Eq.(5) near the instability threshold. A charac- 1
teristic feature of the system described by B}.is the pres- Ao=No ", Bo=0, C)
ence of the Goldstone mode=0, corresponding tk=0 .. ., ,
(see Fig. 2 and associated with the conservation of massCorresponds to a 1D periodic array of “islands.” Consider
The nonlinear interaction between the Goldstone mode angerturbationsA,B of the solution(9) in the form
the unstable mode can substantially affect the system behav- _ o . o
ior near the instability thresholfiL5,16/ and must be taken A=ag' Xt eT e QX+ T B_cgX*eTicc,
into account in weakly nonlinear analyses.

from Eg. (7) that the stationary solution becomes unstable

h~eA(X,T)e**+c.c+ e®B(X,T)+ - - -, with respect to monotonic perturbations, =0, for

First, we consider a-£1 system[two-dimensional(2D)
film with 1D surfacé since some important features of the
nonlinear evolution of the film instability can be studied in
this case.

A. Weakly nonlinear analysis
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SW
A\ 1D F+)\0<0 (10)

\\ | ) Condition (10) allows one to determine regions in the

\ ! (g,p) plane corresponding to different types of pattern exci-

\ tation and stability near threshold, as shown in Fig. 3. The
: straight linesOCB and OGF correspond to\g=0 and the
c i curvesAB, CD, EF, and GH are parts of the hyperbola
o N 3 (blowup) | sw/m+X\,=0. It is interesting that at the intersection point
e/ O, p=1/2 andq=3/4. Sincep=1/2 corresponds te=0,
\ this means that unless the wetting potential depends on the

! 0 film slope, the periodic structure is always subcritical and
J ' therefore blows up. Weakly nonlinear analysis is not useful
! \ in this case.

3 (blow up)

\ . . .
[ 1 \ B. Numerical simulations

| N In order to study the evolution of the formation of 1D
E, w w ~H arrays of islands farther from the instability threshold, we

¢ 3 2 ! g ! z s N ° have performed numerical simulations of E§) by means
of a pseudospectral code with periodic boundary conditions.

FIG. 3. Regions corresponding to different types of excitationFor the parameter values corresponding to region 1 in Fig. 3,

and stability of spatially periodic 1D solutions of E¢(6) near
threshold: (1) supercritical stablef2) supercritical unstable(3)

near the instability threshold, one observes the formation of a
sinusoidal surface profile. With the increase of the superecriti-

subcritical. Coordinates of the points are0(0.75,0.5), cality (i.e., with the decrease offrom g.=1/4), the surface
B(—0.25,1.5),C(0.25,1),F(0.25-0.5), andG(0.5,0). shape becomes significantly nonharmonic and exhibits two

typical periodic patterns: periodic arrays of “cone”-type is-
lands and “cap”-type islands shown in Fig. 4. Cones and
caps are observed fa>0 andp<O0, respectively.

a)
0.4 8
0.2 4
h
0 - -
0.2 .
0. 4 1 1 1 1 1 1 1 1
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X
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FIG. 4. Stationary numerical solutions of E&) in 1D for (g,q,p)= (& (0.1,—1.0,4.0)(cone$ and(b) (0.1,1.0,-4.0) (caps.
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FIG. 5. Localized stationary solutions of E¢p) in 1D: (a) patches of conesy=0.24,p=4.0,q=—2.3; (b) patches of capsy
=0.248,p=—3.0,q=3.0.

For the values of the parametgre&ndg from region 2 in A. Hexagonal arrays of dots and pits
Fig. 3, where periodic arrays of islands near the instability The weakly nonlinear evolution of a hexagonal surface
threshold are unstable due to the presence of the GoldstoRg, \«tire h~32 .A.eki T+ c.c.. where the wave vectoks
. . y i=1 L.y
mode, one observes the formation of localiZed strongly form an equila{tera; triangle with the side=k,= 212, is

modulated patches of islands shown in Fig. 5. Depending on . . . .
the sign of the parametas, these can be either patches of ;Jsually described by three Ginzburg-Landau—type equations

cones or caps. They correspond to stationary solutions of th%r t_he complex a}mplltudeAj [20,22). However, in our case
. . . the interaction with the Goldstone mode must also be taken
system(7), A(x) andB(x), which are obtained in terms of

H H - _ 2
Jacobi elliptic functions and analyzed in detail in R€f6]. into account. Thus, consider=ge—29;€", and

Localized solutions shown in Fig. 5 are predicted only 3
near the instability threshold in the region 2 in Fig. 3. With h=e>, AJ(R,T)eikj'f+ eB(R,T)+c.ct---, (11
the increase of the supercriticality, one observes either the i=1

formation of periodic arrays of cones or caps, or the blow-up.

The latter can be of either “island” type, similar to that where A; (j=1,2,3) are three complex amplitudes of the
exhibited by solutions of Eq(1) without wetting interac- unstable modes with wave vectdts, respectivelyB is the
tions, shown in Fig. 1, or a “pit” type. These two types of real amplitude of the Goldstone mode=er, and T=é€t.

the blow-up are shown in Fig. 6. Note that spontaneoudVe use the multiple-scale analysis near the bifurcation point
formation of nanopits has been recently observed in experito obtain the following system of coupled equations #gr

ments[21]. andB:
IV. PATTERN FORMATION IN 2 +1 SYSTEM ITA = 1A +2(kj- V) A HToAT AT

More interesting is the 2 1 case of a 3D film with a 2D . * *q_ 12
surface whose evolution is described by HE5). Note that +',;§#1 [AF (roki+12Ka) - VATT=[Nol A
Eq. (5) does not have the symmetny— — h. In this case, the 5 5
instability whose threshold corresponds to a finite wave + N (|A“+ AL ]A; +SAB, 12
number(see Fig. 2 usually results in a hexagonal pattern
that occurs via a transcritical bifurcati®®0,22. In this sec- IrB=mVZB+WV2(|A;|2+|Ay|*+|As]?), (13
tion we concentrate on the formation of surface structures
with hexagonal symmetry. where
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FIG. 6. Numerical solutions of E@5) in 1D at particular moments of time showing intermediate stages of the two types of the blow-up:
(a) island type,g=0.23,p=—4.0,q=—1.0, and(b) pit type,g=0.23,p=4.0,q=1.0.

3 1 resonant-interaction coefficiemt, the system can exhibit
>\1=( -1+ ZP+Q)(1+ ED—ZQ), (14 formation of hexagonal arrays of either moun@mts or
pits. Dots occur forr,>0(Ay>0) and pits occur forrg
<0(Ap<0). In both cases, the hexagonal pattern can be
. r=—p—2rg, r,=1-2r,, stable only forhg>0 and\y+2A,>0 [22]. Also, in our
case, the presence of the Goldstone mode strongly affects the
. ) o stability of the pattern. A detailed stability analysis of hex-
and other parameters are defined in 8. The indiceg,|,n agonal patterns in the presence of the Goldstone mode,

run from 1 to 3. o , within the framework of the systeifi2) and(13), has been
Equations(12) and(13) are similar to those derived pre- recently carried out in the long-wave approximatigte],
viously for the interaction between hexagonal Marangoniy,g it has been shown that if

convection and the long-scale deformational Marangoni in-
stability [18], as well as in several other pattern forming 2ws+m(\g+ ;) <0, (16)
systems with conserved quantities9]. Note that since a
hexagonal pattern occurs via a transcritical bifurcation, Eqg hexagonal pattern is unstable at any supercriticajity
(12) is valid, strictly speaking, only for,=0(¢€). Other- _
wise, these equations should be considered as model equa-The gescribed stability conditions determine regions in
tions describing weakly nonlinear evolution of a hexagonak,q @,p) plane where self-organization of hexagonal ar-
pattern(see Ref[23]). System(12) and(13) has the follow-  angements of dots or pits can be observed. These regions
ing stationary solutions: are shown in Fig. 7. The lineBC and FG correspond to
No=0 and the curvedB, CD, EF, andGH are parts of the
hyperbolar o+ 2\ ,=0. Condition(16) holds outside the re-
gion bounded by the dashed lines. Inside this region surface
structures with hexagonal symmetry can be stable in a cer-
B=0, tain range of the supercriticalitg; and the pattern wave
number (a “Busse balloon’) (see Refs[20,19 and refer-
corresponding to a spatially regular pattern of equilaterabnces therein The linesBK and FL correspond ta =0
hexagons, with the signs corresponding ta,>0 andr,  and divide the regions where hexagonal arrays of dots or pits
<0, respectively. Thus, depending on the sign of thecan be observed. Note that the full stability analysis must

1 1
ro=>|1-5pP-29

[rol+ \r5+4g:(No+2)y)
L= = +
Ai=ho== 2(Ag+2\;) ' (15
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B. Wires, rings, and other surface structures

It is known that hexagonal patterns can become unstable
with respect to patterns with other symmetiigs,20,22,24
This instability is determined by the Landau coefficia(i),
governing the nonlinear interaction between two modes char-
acterized by two wave vectork; and k,, ki=k,=K¢,
Ky ko= kicosdx The Landau coefficient is a function of the
angle ¢ between the two wave vectors. Obviouslyg) is
defined for B<¢<<m and\(¢)=\(7—¢). Standard multiple-

o of scale analysis of Eq(5) near the bifurcation threshold
=g, yields
il
3
L M)=| —5+tp+2q/la () ta-(d)]
3r +(=1+p)cosgla.(d)—a _($)], (18
ol _ 1*=pcos¢p—2q
5— @+(9)= (cos¢ +1/2)2

Note that the functioi(¢) is singular atp=/3,27/3 due
FIG. 7. Regions in§,p) plane where self-organization of hex- tg the resonant quadratic interaction between these modes,
agonal arrays of dots or pits can be observed in solutions offd. which is responsible for the formation of a hexagonal pattern
in 2D. The points, C, F, G, M, andN are (1/4, 1), (13/20, 3/3,  and is not taken into account in the computation@p). The
(1/2, 0, (7/10, 2/5, (—0.46,1.91), and (0.24,0.91), respectively. Landau(cubic) interaction coefficient in this case is equal to
N1 in Eq. (14). Note also thah (0)=\y+sw/m, which ex-
include the consideration of finite-wavelength instabilitiesplains the stability conditiori10).
[23] but this is beyond the scope of the present paper. Stability of a hexagonal pattern with respect to patterns
One can see from Fig. 7 that, unlike the 1 case, in the With other symmetries was investigated in a number of
2+1 system there is an interval 84 <0.6[or|c|<0.1, see  Works(see, e.g., Ref$25,24,20,22and references thergin
Eq. (6)] in which hexagonal arrays of dots or pits are alwayslt was shown that, with the increase of the su_percr|t|callty, a
subcritical and therefore unstable. Thus, the wetting interac?®*agonal pattern can become unstable with respect to a
tion between the film and the substrate can lead to the selfilripe pattemn if\;/\o>1. The presence of the Goldstone
organization of dots or pits with the almost uniform sizesmMode, as well as the presence of the quadratic nonlinear
only if the wetting potential has strong-enough dependencérms with the coefficients, andr in Eq. (12) (which char-
on the surface slopée.g., sufficient anisotropynamely, for ~ acterize the dependence of the resonant quadratic interaction
|c[>0.1 or[see Eq(4)] coefficient on the mode wave vectd23]), can promote the
instability [23,19. In our numerical simulations we have ob-
served the transition from hexagonal arrays of dots or pits to
stripe patterngwires), which occurs with the increase of the
>0.4u82. (17)  supercriticality, g.—g. These wires are shown in Fig. 9.
Transition from dots to wires in epitaxially strained films has
been observed in experimens].
An interesting surface structure can develop in the param-
This conclusion is related to the formation of only thoseeter regions wherk,>0\ >0, and\(7#/2)<0. In this case,
regular structures whose characteristic scale is much largéhnere is a strong interaction between the modes with orthogo-
than the critical film thickness. nal wave vectors that can lead to a resonant coupling be-
We have performed numerical simulations of Ef) in  tween two systems of hexagons whose basic wave vector
2D by means of a pseudospectral code with periodic boundsets k4,k,,ks) and K4,ks,kg), each forming an equilateral
ary conditions. The results of the numerical simulations ardriangle, are mutually orthogonal. This can lead to the forma-
shown in Fig. 8. One observes the formation of hexagonafion of a dodecagonal quasiperiodic pattg2i,24. Our nu-
arrays of dots or pits in the parameter regions predicted bynerical simulation of Eq(5) shows that such quasiperiodic
the weakly nonlinear analysis. It is interesting that, similar tododecagonal arrangement of dots can indeed form; it is
the 141 case, the formation of two types of dots is possible:shown in Fig. 10a). However, this dodecagonal structure
conelike and caplik¢Figs. §a,b]. With the increase of the occurs only at the beginning of pattern formation; later in
supercriticality cones transform into caps. Similarly, the for-time it either gets replaced by a hexagonal structure or grows
mation of two types of pits is observed: “anticones” at small further and ultimately blows up. The intermediate stage of
supercriticality and “anticaps” at larger on¢Bigs. §c,d)]. the blow-up is shown in Fig. 18).

ad(L,0)
9|V h|?
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a) b)

FIG. 8. Numerical solutions of E@5) for various parameter value&) hexagonal array of cone-type dopss2.0,q=—0.5,9=0.2; (b)
hexagonal array of cap-type dots=—4.0,q=1.0,g=0.01; (c) hexagonal array of anticone-type pifs= —4.0,q=2.0,g=0.24; (d)
hexagonal array of anticap-type pifs= —4.0,q=2.0,g=0.2.

In the parameter regions where the hexagonal patterns ad®ts or pits. Pattern selection and stability are determined by
subcritical, or unstable according to conditidr®), solutions  the properties of the wetting potential. We find that unless the
of Eqg. (5 blow up in a finite time. Depending on the wetting potential depends on the slope of the film surface the
resonant-interaction coefficient,, the blow-up occurs spatially regular arrays of dots or pits are subcritical and the
through the formation of high, spatially localized mounds, solutions of the derived equation blow up in a finite time; the
similar to that shown in Fig. 1, or deep pits. The latter de-weakly nonlinear equation is inapplicable in this case. We
velop into the structures, shown in Fig. 11, that strongly re-have obtained the regions in the plane of dimensionless pa-
semble “quantum rings{28] or “quantum fortressesf21]  rameters characterizing the wetting interaction potential
observed in experiments. where spatially regular arrays of dots or pits can be stable.
We have shown that the stability of patterns is strongly af-
fected by the presence of the Goldstone mode associated
with the conservation of mass.

We have derived a small-slope nonlinear evolution equa- Spontaneous formation of hexagonal arrays of quantum
tion describing the spontaneous formation of quantum dotslots has been observed in several processes: ion sputtering
in an epitaxially strained solid film with wetting interactions [29], self-assembling of Ag monolayers on R80], Pb on
between the film and the substrate, near the threshold of theu [31], and Ge on S111)-(7X7) [32], as well as in the
Asaro-Tiller-Grinfeld instability. We have shown that the multilayer growth of superlatticd83]. Currently, we are not
wetting interaction retards the instability and changes itsaware of any observation of a spontaneous self-organization
spectrum so that the instability threshold corresponds to af hexagonal arrays of dots or pits resulting from the ATG
small but nonzero wave number. This effect causes the forinstability of epitaxially strained solid films. In fact, this may
mation of spatially regular patterns—hexagonal arrays obe difficult to observe since hexagonal structure is formed

V. DISCUSSION AND CONCLUSIONS
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b)

a)

FIG. 9. Formation of “wire” patterns via transition frorga) dots,p=4.0,q=—1.0,g=0.1; (b) pits, p=—4.0,q=2.0,g=0.1.

near the instability threshold and it becomes unstable withransitional stage of the blow-up solution, the mechanism of
the increase of the supercriticality. A very precise tuning ofthe ring formation—specific properties of the wetting inter-
parameters would be required in order to achieve nearaction between the film and the substrate—may well be cap-
threshold conditions. However, it is important that our analy-tured. Of course, the derived weakly nonlinear model cannot
sis shows a principal possibility of such self-organization ofdescribed the full dynamics of this process.
quantum dots in Stranski-Krastanow growth. Note that the present model is derived in the small-slope
Our model also describes interesting phenomena such ass@proximation that holds in the presence of the wetting in-
transition from quantum dots to quantum wif&§] and the teraction only if the wetting potentiab satisfies conditions
formation of quantum rings or isotropic quantum fortresseq4). These conditions put strong restrictions on the type of
[21,28. Although the latter appears in the present model as ¢he potential® for which the approximation can be valid.

a) b)

Y

FIG. 10. Formation of a quasiperiodic array of dots with dodecagonal symnpetry; 3.0,q=—0.1,g=0.249. (a) Initial stage of
formation; (b) intermediate stage of the blow-up.
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FIG. 11. Intermediate stage of
the blow-up solution of Eq(5) in
the form of a “quantum ring”;p
=2.0,q=1.0,g=0.2.

Probably the most important restriction is the strong depention and the case of a rigid substrate as the first step in
dence of the wetting potential on the surface slope. For exanderstanding possible effects of the wetting interactions on
ample, in the case of the “two-layer” model, in which the the formation of quantum dots resulting from the ATG insta-
wetting interaction is defined by a thickness-dependent sumility of epitaxially strained solid films. Since the main
face tensiony(h), so that® = (dy/dh)/(1+|Vh|?)2[12],  effect—the change of the instability spectrum from the long
conditions (4) would imply L[s®/oh|<®,L?d*®/sh%  wave k,=0) to the short wavek,#0)—depends neither
<®, and [9®/dh|<L|s*®/dh?|. These inequalities can on the rigid-substrate assumption nor on the small-slope ap-
hold, for instance, near the extremum of the functidth),  proximation, one can investigate, by means of the weakly

provided the function is not monotonic. At the same time, anonlinear analysis, pattern formation in more general cases
sufficiently strong dependence of the wetting potential on then which these assumptions are relaxed.

surface slope can be expected in the presence of large anisot-

ropy. Note also that if one assumes that the wetting potential

can depend on the curvature of the film surface, this can

change the sign of the nonlinear teW3[hV?h] in Eq. (5). ACKNOWLEDGMENTS
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